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During conceptual design speed and accuracy are often at odds. Specifically in the
realm of launch vehicles, optimizing the ascent trajectory requires a larger pool of analyt-
ical power and expertise. Experienced analysts working on familiar vehicles can produce
optimal trajectories in a short time frame, however whenever either “experienced” or “fa-
miliar” is not applicable the optimization process can become quite lengthy. In order to
construct a vehicle agnostic method an established global optimization algorithm is needed.
In this work the authors develop an “artificial” error term to map arbitrary control vectors
to non-zero error by which a global method can operate. Two global methods are com-
pared alongside Design of Experiments and random sampling and are shown to produce
comparable results to analysis done by a human expert.

Nomenclature

ACO Advanced Concepts Office
AP2 Artificial p2
DE Differential Evolution
EVD Extreme Value Distribution
PDF Probability Density Function
POST Program to Optimize Simulated Trajectories
PS Particle Swarm
SAP2 Scaled Artificial p2
UR Uniform Random

I. Introduction

During conceptual design of complex systems, speed and accuracy are often at odds with one another.
Many aspects of the design are fluctuating rapidly due to the interaction of analysis disciplines and competing
design paths. Nevertheless, accurate data must be collected from which to down-select designs.1 Downstream
metrics such as reliability, safety, manufacturability, and operations cost are heavily impacted by down-
selection during this phase,2–5 leading to a commitment of up to 80% of the Life Cycle Cost of the system.2

Thankfully design freedom is high during the conceptual phase, and so pitfalls normally only uncovered past
Phase A can be identified and avoided early while they are cheap.6 However, due to the disciplinary and
institutional changes commonly occurring during the conceptual phase, conceptual studies should be on the
order of weeks to a month in order to remain relevant.7,8 Therefore enabling the conceptual designer to
produce accurate data in a timely manner is tantamount to program viability.

For launch vehicles in particular, trajectory analysis and optimization is a large hurdle. Tools such as the
industry standard Program to Optimize Simulated Trajectories (POST) have traditionally required an expert
in the loop for setting up inputs, executing the program, and analyzing the output. While an experienced
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analyst presented with a familiar vehicle can produce optimal performance figures in a timely manner, as
soon as the experienced or familiar adjectives are invalid the process can become lengthy. In addition, an
experienced analyst working on a similar vehicle may go into the analysis with preconceived ideas about what
the vehicles trajectory should look like, which can result in sub-optimal performance reports. Therefore to
enable the conceptual designer to produce accurate data in a timely manner we require a vehicle-agnostic,
validated, and automated method.

II. Approach

Within NASA Marshall Space Flight Center’s Advanced Concepts Office (ACO), the trajectory software
in use is the Program to Optimize Simulated Trajectories (POST).9 It provides the dual analyses of direct
shooting trajectory analysis and constrained local optimization. During a run, POST works with user
specified independent and dependent variables to optimize a user specified variable’s value. The selected
optimizer first propagates the vehicle defined within an input file and initial conditions for its flight through
a series of phases or events then seeks to improve the trajectory. At first this is done by minimizing the
difference between the currently propagated trajectory and the desired one via dependent variable setup and
a sum squared error value represented by the variable p2. If p2 enters the feasible region (p2 ≤ 1) then focus
shifts to optimizing the desired variable. The p2 space is in general non-linear and multi-modal10,11 and
POST’s current optimization routines are local. Therefore whichever optima is closest to the initial values
of the independent variables will be the one reported assuming the optimizer is given sufficient iterations
to resolve it. Due to the multi-modal response, a reported optima has only a chance of being the global
optimum. From observation the authors have found feasible regions to be disjoint, housing one or more
optima, each with a characteristic spread of the optimized variable.

To give more accurate data for any vehicle under analysis we desire finding the global optimum from
among the collection of local optima. In order to gain confidence on capturing the global optimum a global
optimization algorithm must be applied. However, the direct shooting method by which POST propagates
trajectories puts up a roadblock here. Within the POST input file are events acting as gates through which
the trajectory must pass to perform the desired mission. Each phase is triggered by one or several variable
values satisfying equality on inequality constraints. For example these events can include launch tower
clearance at a certain height, dropping stages when their propellant is exhausted, and inserting into orbit via
specified orbital parameters. POST allows these events to be primary (required) or secondary (optional). If
the initial values of the independent variables are such that the initial trajectory POST propagates does not
pass through each primary event, then POST immediately returns with a p2 value of exactly zero and an
output message of “Unusable Nominal Trajectory”. When analyzing a new vehicle or a set of vehicles the
independent variable space will tend to be large in order to capture all potential modes of ascent. Therefore a
large proportion of the corresponding p2 space will be identically zero in regards to values of the independent
variables, severely hindering the use of a global optimization method without a priori knowledge of the non-
zero region. If a global method was used on this space as is, the unusable region will be the clear winner as
the error of usable trajectories only asymptotically approaches zero rather than achieving it exactly. If done
by a transform, recoding the unusable space value of exactly zero to a large number (∼ 1015), then only
those members of an initial population who just so happen to start in the usable region will be useful. With
the observation that the usable region is small in regards to the full investigation space,12 we conclude that
a significant amount of time would be wasted bringing all those points in the unusable space to where they
are useful.

In previous work13 a brute force version of global optimization was employed via uniform random sampling
of the independent variables. In this work we present an “artificial p2” (AP2) calculation which assigns a
non-zero value to any arbitrary set of independent variables, enabling the use of global optimizers with
POST.

A. Artificial p2

The p2 calculation within POST is a sum squared error using the current values of the specified dependent
variables at the desired part of the trajectory.14 When an unusable independent variable or control vector is
input, not all desired events are present for calculation of p2 in POST’s normal manner, and the program exits
returning a p2 value of exactly zero. The AP2 calculation simply takes the information which is available
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in the propagated trajectory and calculates the sum squared error in the same manner. For example, if
the dependent variables are associated with phases one, two, and three, however the input control vector
only produces a trajectory which propagates through phases one and two, the AP2 calculation simply uses
the information in phase two to stand in for the missing phase three data. For example, if phase three is
defined as orbital insertion and constrained by orbital elements apogee and perigee, the AP2 calculation
would simply use the values for apogee and perigee in phase two as stand in values.

Figure 1 below shows the effect of applying the AP2 calculation. Along the x-axis are the components of
the control vector ~u for an example vehicle. Each point represents a single run of POST. In red are usable
runs, those whose initial ~u resulted in a trajectory which propagated through each of the required phases.
In blue are those which returned as unusable and for whom the AP2 calculation was applied. At first glance
it is of note that many of the control vector components have little to no relationship with p2. The first
component has the most relationship with p2, stretching outward from the usable region to remain flat for
most of the component’s range.

p2 

u_0 u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_10 

Usable
Unusable

Figure 1: p2 versus control vector with artificial p2 calculation

As was discussed previously, large flat areas are not of much use in finding the usable region. To combat
this problem, a modification is made to the AP2 calculation to scale in relation to the expected burn time
of the vehicle.

B. Scaled Artificial p2

Knowing the initial propellant loads, thrusts, and specific impulses of the stages and engines making up the
vehicle gives an “ideal” burn time which can be used to induce a gradient in the AP2 calculation. In the
event that ~u crashes the vehicle or causes it to shoot farther up than desired, the burn time will be less than
expected. The AP2 calculation is then modified as

scaled artificial p2 =
ideal burn time

burn time
∗ artificial p2

to allow these effects to introduce curvature in the value. Sampling the same example vehicle then produces
the data in Figure 2 below.

p2 

u_0 u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_10 

Usable
Unusable

Figure 2: p2 versus control vector with scaled artificial p2

As with AP2, the scaled artificial p2 (SAP2) calculation has several components which do not have
a noticeable effect on the value. However, several more do have an effect, producing a gradient which
leads to the usable region. While global methods do not in general use gradient information, many do use
information from previous iterations. For example, PS utilizes an individual particle’s best position and the
overall swarm’s best position to update the individual particle’s velocity. By introducing the slope toward
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the usable region, the time spent evaluating points in the unusable space will be reduced by drawing global
optimization method members toward the usable space.

C. Comparison

To compare calculations, the unusable runs are collected and colored by calculation type. It is easily seen
in Figure 3 below that in general SAP2 is of higher magnitude, and more spread out in the unusable region
far from the usable region. The higher magnitude is due to the SAP2 calculation using the burn time of
the vehicle. The shorter the burn time (further away from the usable space) the larger the ratio of ideal to
observed burn time and therefore a larger SAP2 value. The spread and gradient are due to the fact that
a vehicle can only crash so hard. For example, if a vehicle’s orbital insertion is constrained by apogee and
perigee in phase three but in phase two the vehicle crashes there is a hard minimum for the apogee and
perigee numbers used in the AP2 calculation. However for SAP2 the burn time is affected by each of the
components of ~u and so these differences manifest in a spread. The gradient shows that this component in
particular has a large influence on the overall burn time.

Artifical Runs

p2

0

5e+11

1e+12

-1.00 -0.50 0.00
u_0  

Artificial Runs (u0 < 0.4)

0

2e+11

4e+11

-1.00 -0.80 -0.60 -0.40
u_0 

Y
Scaled
Unscaled

Figure 3: Comparison of scaled and unscaled artificial p2

III. Comparison Trials

In this section we present a series of trials designed to test the application of several global optimization
methods utilizing the SAP2 calculation to optimizing the ascent trajectory of a launch vehicle using POST.
Three global optimization methods are selected: Uniform Random sampling (UR), Differential Evolution
(DE),15 and Particle Swarm (PS).16 These are selected due to the author’s familiarity and their availability
through the scipy.optimize17 and pyswarm18 libraries. As each method in testing incorporates stochastic
steps in their procedure, each trial is repeated ten times to get a fair statistical spread. All data reported in
Results will then be based upon these repeated trials.

The multiPOST software developed by the authors, presented in [13] and extended in [12,19,20] is used
for all trials and limited to 80 simultaneous threads running across several Windows 7 machines.

A. Trial Levels

To asses the algorithms’ abilities a full factorial experimental design was run. Trials are conducted setting
the iterations each algorithm has to work with to [5, 10, 15]. These will be referred to as global iterations.
To assess the role of POST’s internal optimizer (if any) in tandem with the global optimizer, trials will
also be run setting POST’s iterations to [5, 10, 15]. These will be referred to as local iterations. A general
guideline to initial population size21 and Design of Experiments (DOE) sampling22 is to use 10x the number
of dimensions. The initial population size of DE & PS methods are then set accordingly. The total number
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of control vectors evaluated for these global methods will then be Global Iterations ∗N . UR trials are set
to 1000 control vectors evaluated as a comparison.

Table 1: Comparison Trials Setup

Method
Global

Iterations
Local

Iterations
N

Differential Evolution 5, 10, 15 5, 10, 15 120

Particle Swarm 5, 10, 15 5, 10, 15 120

Uniform Sampling N/A 5, 10, 15 1000

B. Trajectory Description

The trajectory used is a 2.5 stage to orbit cargo vehicle the authors have previous experience with, and use
the previously analyzed and “manually” run trajectory as the point of comparison and stand-in for global
optimality. The vehicle has two solid rocket boosters attached running simultaneously with a liquid engine
Core stage. In-line with the Core stage is a liquid engine Upper Stage. The vehicle mission is to ascend
to Low Earth Orbit, jettisoning the cargo shroud whenever a free molecular heating rate limit is satisfied,
remain in orbit for two revolutions, then depart for a Trans-Lunar Injection burn. During ascent are a gravity
turn, booster staging, Core staging, cargo shroud jettison, and start up of the Upper Stage. At mission end
the Upper Stage is required to hold back a percentage of its total ∆V as propellant for a Flight Performance
Reserve. Dependent variables take the form of maximum dynamic pressure and axial acceleration constraints,
orbital insertion constrained to a particular circular orbit, and Trans-Lunar Injection modeled as a specific
value of specific orbital energy C3. Independent variables are nine pitch rates spread across the ascent,
payload mass, launch azimuth, and upper stage propellant load for a total of 12. Finally, the optimized
value undergoing maximization is the payload mass delivered.

IV. Results

For each setting of algorithm type, number of global iterations, and number of local iterations, we are
interested in the trends in, distribution of and models for several responses: time required, number of results
returned, and payload delivered. Trends are displayed in the form of variability gauge charts containing
box plots. Each box plot consists of a central rectangle whose upper and lower ends represent the third
and first quantiles respectively, showing the inner quartile range. The horizontal line within the central
box shows the median. Vertical lines extending from the central box show the maximum and minimum of
the data. Distribution fitting is performed using JMP Software from SAS23 utilizing maximum likelihood
estimation, corrected Akaike Information Criterion,24 and visual inspection of Probability Density Function
(PDF). Several effects of interest are found to follow the Johnson Sl distribution. Time-to-event data is
often modeled using a lognormal distribution,25 which is a special case of a system of distributions known
as the Johnson system. The Johnson system is able to fit any combination of location, scale, skewness,
and kurtosis, for data that are unbounded, interval-bounded, or bounded on one side (Johnson Sl). The
probability density function (PDF) of the Johnson Sl is defined as

f(x) =
δ

|x− θ|
ψ[γ + δlog(

x− θ
σ

)]

where ψ is the standard normal pdf and x > θ if σ = 1, or x < θ if σ = −1. The parameters θ, σ, γ and δ
are estimated from data using maximum likelihood estimation.

For each metric models are created to help elucidate the performance of each method as they pertain to
the levels of each trial.

Model interpretation can be found by examining Table 2. The full model is a full quadratic model in the
number of global and local iterations. That is,

E[Y ] = β0 + β1 ∗ (Global Iterations) + β2 ∗ (Local Iterations)

+β12 ∗ (Global Iterations) ∗ (Local Iterations) + β11 ∗ (Global Iterations)2 + β22 ∗ (Local Iterations)2
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where E[Y] represents the expectation or average value of Y. R2 represents the proportion of variation in
Y explained by the model. The root mean squared error (RMSE) represents the unexplained variation. For
example, for the Differential Evolution Total Time response, 98% of the variation in Total Time is explained
by the model, and the unexplained variation is 107.5 minutes.

The estimates of the β parameters are found using ordinary least squares regression.26 The interpretation
of the intercept is the average value of the response when the predictors are at their zero level. In our
experiment, the intercept has no physical interpretation and will be ignored. The interpretation of the
slopes of the main effect terms is the average change in the response when increasing the predictor by one
unit. For example, increasing the number of global iterations for the Differential Evolution algorithm by 1
leads to an increase of 128.8 seconds of Total Time on the average. However, the variation in the response is
also affected by the quadratic and interaction effects. They represent combinations of effects. For example,
the change in Total Time due to changing the number of local iterations depends on the number of global
iterations. The estimate of the interaction effect is 14.2.

The estimates are calculated using data from the experimental runs. Another set of experimental runs
would give different, but similar results. The variation in the estimates due to sampling is captured in the
standard error. The t Ratio uses the estimate and its standard error to test the hypothesis that the true
effect is actually zero, that is, the term is not significant in explaining variation in the response. A high t
Ratio gives evidence for the significance of the term. High t Ratios correspond to low p-values. The p-value
(Prob > |t|) is the probability of rejecting the hypothesis of zero effect when it is really true. We used a
cutoff level of significance of 0.05 to determine significance. All estimates with p < 0.05 have been removed
in Table 2.

Trial summary data is presented in Table 3, displaying levels and high level statistics on the Time
Required, N Returned, and Payload Delivered metrics to be discussed in detail in the following subsections.

Term Estimate Std Error t Ratio Prob > |t| Summary of Fit

Intercept -1388.1000 43.8886 -31.63 <.0001 RSquare 0.9801

Global Iterations 128.8133 2.7758 46.41 <.0001 RSquare Adj 0.9791

Local Iterations 110.1500 2.7758 39.68 <.0001 Root Mean Square Error 107.5047

(Global Iterations-10)*(Global Iterations-10) 2.9613 0.9616 3.08 0.0028 Mean of Response 1050.8890

(Global Iterations-10)*(Local Iterations-10) 14.2440 0.6799 20.95 <.0001 Number of Observations 90

Intercept -522.6333 38.3193 -13.64 <.0001 RSquare 0.9109

Global Iterations 66.6700 2.4235 27.51 <.0001 RSquare Adj 0.9067

Local Iterations 19.7900 2.4235 8.17 <.0001 Root Mean Square Error 93.8626

(Global Iterations-10)*(Global Iterations-10) 2.4687 0.8395 2.94 0.0042 Mean of Response 383.111

(Global Iterations-10)*(Local Iterations-10) 3.6030 0.5936 6.07 <.0001 Number of Observations 90

Intercept 1241.9755 92.5998 13.41 <.0001 RSquare 0.6632

Global Iterations -36.8940 5.8565 -6.3 <.0001 RSquare Adj 0.6474

Local Iterations -61.0769 5.8565 -10.43 <.0001 Root Mean Square Error 226.8222

(Global Iterations-10)*(Local Iterations-10) 5.3313 1.4345 3.72 0.0004 Mean of Response 338.7909

(Local Iterations-10)*(Local Iterations-10) 4.5915 2.0288 2.26 0.0262 Number of Observations 90

Intercept -1575.6220 51.8370 -30.4 <.0001 RSquare 0.9800

Global Iterations 159.3037 3.4825 45.74 <.0001 RSquare Adj 0.9793

Local Iterations 142.7841 3.4857 40.96 <.0001 Root Mean Square Error 131.4472

(Global Iterations-10.0581)*(Local Iterations-10.1744) 13.9804 0.8537 16.38 <.0001 Mean of Response 1479.2790

Number of Observations 86

Intercept -747.9409 67.7664 -11.04 <.0001 RSquare 0.9553

Global Iterations 162.8334 3.8953 41.8 <.0001 RSquare Adj 0.9531

Local Iterations 22.5150 3.9116 5.76 <.0001 Root Mean Square Error 149.5093

(Global Iterations-10.0581)*(Global Iterations-10.0581) 4.6688 1.3408 3.48 0.0008 Mean of Response 1152.6860

(Local Iterations-10.1744)*(Local Iterations-10.1744) -2.6359 1.3416 -1.96 0.0529 Number of Observations 86

Intercept 431.1059 45.6127 9.45 <.0001 RSquare 0.6077

Global Iterations -10.2491 2.7869 -3.68 0.0004 RSquare Adj 0.5883

Local Iterations -25.4950 2.8001 -9.11 <.0001 Root Mean Square Error 105.1726

(Global Iterations-10.0581)*(Local Iterations-10.1744) 1.5566 0.6831 2.28 0.0253 Mean of Response 130.9853

(Local Iterations-10.1744)*(Local Iterations-10.1744) 3.7716 0.9602 3.93 0.0002 Number of Observations 86

Intercept 0.2378 0.1206 1.97 0.0586 RSquare 0.5998

Local Iterations 0.0723 0.0112 6.48 <.0001 RSquare Adj 0.5855

Root Mean Square Error 0.2497

Mean of Response 0.9611

Number of Observations 30

Intercept 18.9000 3.0031 6.29 <.0001 RSquare 0.5209

Local Iterations 1.2100 0.2452 4.93 <.0001 RSquare Adj 0.4854

(Local Iterations-10)*(Local Iterations-10) -0.1900 0.0849 -2.24 0.0338 Root Mean Square Error 5.4830

Mean of Response 27.833

Number of Observations 30

Intercept 1953.0177 218.8696 8.92 <.0001 RSquare 0.7078

Local Iterations -138.4769 17.8706 -7.75 <.0001 RSquare Adj 0.6862

(Local Iterations-10)*(Local Iterations-10) 14.3340 6.1906 2.32 0.0284 Root Mean Square Error 399.5994

Mean of Response 807.1476

Number of Observations 30

UR N Results

Total Time

Difference 

from Global

PS N Results

Total Time

DE N Results

Total Time

Difference 

from Global

Difference 

from Global

Table 2: Data from trials
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Global Local μ σ μ σ μ σ

5 5 600 10 217 10 48 11 1036 360

5 10 600 10 432 8 76 19 484 347

5 15 600 10 646 21 87 29 131 74

10 5 1200 10 495 60 259 98 606 392

10 10 1200 10 992 102 352 109 196 124

10 15 1200 10 1518 148 415 91 52 11

15 5 1800 10 804 73 529 104 405 199

15 10 1800 10 1699 156 753 148 107 56

15 15 1800 10 2656 193 928 132 33 7

5 5 600 9 315 33 255 73 392 175

5 10 600 9 664 91 399 84 141 67

5 15 600 9 1014 145 448 87 51 26

10 5 1200 9 716 59 927 120 307 197

10 10 1200 10 1422 142 1110 144 48 19

10 15 1200 10 2179 213 1147 147 27 3

15 5 1800 9 1163 109 1819 250 209 188

15 10 1800 10 2272 140 2039 219 34 8

15 15 1800 10 3262 157 2108 120 24 2

5 1000 10 0.6 0.2 20 4 1619 575

10 1000 10 1.0 0.2 31 7 568 381

15 1000 10 1.3 0.3 32 5 234 60

Uniform 

Random

Trial Data 

Used

Differential 

Evolution

Particle 

Swarm

N 

Evaluated

Time (minutes) N Results Difference from Global (lbm)

Table 3: Data from trials

A. Time Required

UR is far and away the quickest method as can be marginally seen in Figure 4, the longest trial requiring
just under 1.5 minutes. The reason why this method can evaluate 1,000 runs in such a short time is due to
the small usable space this vehicle exhibits. Across each trial, the number of usable ~u randomly averages to
about 6.7%. Figure 6 shows the distribution of seconds required to evaluate an unusable run, which follows a
Johnson Sl distribution. The mean found is 0.61s, with standard deviation of 0.38s. For a 1,000 sample UR
run with a 6.7% usable rate, 80 available simultaneous threads and the time spread, evaluating the unusable
runs will take from 3.5-10.5s. The remaining time is then dominated by the relationship between the time
required for POST to perform an iteration and the number of local iterations allowed. This is shown in
Figure 5, which depicts a roughly linear trend with local iterations. This behavior is backed up by the model
selected which found only a first-order term with local iterations to be significant. The coefficient estimate
for the relationship with local iterations is at 0.0723 minutes or 4.34 seconds. At the 5 local iteration level
this puts the average usable run at 21.69s which falls in line with the chart. From this data we then have a
measure of roughly 0.61s to evaluate an unusable run or rather a run without iterations, and 4.34s per local
iteration to evaluate a usable run.
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Figure 4: Total time required
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Figure 5: Time required to evaluate usable run
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POST Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

 Johnson Sl(1.44446,1.24182,0.17657,1)

Quantiles
100.0%
99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

6.007
1.925
1.556
1.22

0.701
0.488
0.344
0.281
0.25

0.219
0.188

Summary Statistics
Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N

0.606
0.377
0.002
0.611
0.602

28039

Fitted Johnson Sl
Parameter Estimates
Type
Shape
Shape
Locati?
Scale

Estimate
1.444
1.242
0.177

1
-2log(Likelihood) = 2197.17769332465

Figure 6: Time required to evaluate usable run

Both DE & PS exhibit relationships with global and local iterations. In each case the method is more
sensitive to global iterations, which makes sense as more global iterations means more runs in general. The
relationship with local iterations comes very close however, which also makes sense as the driving factor in
the total time is how long POSTs local optimizer takes to run local iterations. Both exhibit a significant
positive interaction term. This makes sense, as the number of local iterations linearly increases the time
required per usable run, and the higher the global iterations the higher the percentage of the population that
is within the usable region. The vertex at ten iterations tells us that this behavior should be expected to
further increase quadratically outside the levels of this study. DE also exhibits a quadratic relationship with
global iterations, leading us to expect that increasing global iterations beyond 15 may lead to a situation
where DE takes longer PS.

B. Number of Results

The next metric of interest is the number of feasible data points returned by the methods, shown in Figure
7. As with time required, increasing either the global or local iterations increases the number of converged
points returned. UR & PS share a negative quadratic relationship with local iterations. This shows us that
there is a point of diminishing returns with the number of local iterations used, the vertex of which is at ten
local iterations. This can be seen dramatically for the UR trials in Figure 8.
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Figure 7: Number of converged trajectories reported
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Figure 8: Number of converged trajectories reported

Unlike Time Required, N Returned is much more sensitive to the number of global iterations for DE &
PS. This shows that the global methods are doing a good job of finding the feasible region within the usable
region, as in general the number of local iterations used is not sufficient to resolve a minima. If the situation
were reversed it would be telling us that the local optimization step was doing more to bring the population
into the feasible region. Both DE & PS have a positive quadratic relationship with global iterations, showing
that the maximum efficacy of global iterations has not been captured by these trials. If there is a point of
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diminishing returns for global iterations it is beyond 15. Additionally DE has an interaction term, showing
that it has a stronger relationship with the local optimization step. This makes sense, as the Time Required
metric showed DE taking less time to complete and it returns less data meaning that it is slower to reach
the feasible region. It is therefore utilizing the local optimization step more directly to reach optima.

C. Payload Delivered

The final metric of interest is presented as the difference from the global optima resulting from the authors
previous analysis. Performance across trials is shown in Figure 9 below. UR at low local iterations has a
lot of variability and tends to give a poorer answer than one given by either PS or DE. As the number of
local iterations increases however, the answer quickly improves. At its highest local iterations level UR is on
par with mid-level performance of either DE or PS. For each model there is a negative linear relationship
and a positive quadratic relationship with local iterations centered at ten local iterations. This behavior
mirrors that seen in the N Results metric: that there is a point of diminishing returns in performance past
ten local iterations for all of the methods. All methods exhibit a stronger relationship with local iterations
than other terms (excluding the intercept), which makes sense as the local iterations in these trials fine-tune
the initial conditions selected by either UR sampling or the populations, iteration, and method of the global
algorithms. In addition both DE & PS exhibit an interaction term, showing that there is a relationship
between the global and local optimization steps. This makes sense, as many optimization schemes will use
a final local optimization step to fine-tune the answer.
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Figure 9: Difference from global optima

PS shows two interesting behaviors, better shown also with Figure 9 in the bottom portion depicting the
variation in standard deviation for the Difference from Global data. The green line shows the mean of the
standard deviations in each grouping of global iterations. While DE shows a decrease in standard deviation
as global iterations, PS is virtually level. This suggests that there is little improvement to be gained in
increasing the global iterations past five for PS. In addition it can be seen that there is little improvement in
increasing the number of local iterations past ten, an observation noted in the previously presented metrics.
Finally, UR shows the largest relationship between local iterations and standard deviation. This behavior
once again highlights the effect of a small usable region, and even smaller feasible region. At low local
iterations, a ~u has to be very near the feasible region to have any chance of passing within, effectively
reducing the space which will produce “usable” information. As local iterations increase, the samples have
to be less lucky as the effective usable region grows larger with each available local iteration.
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V. Conclusion

In light of the trial data we come to the conclusion that PS is more effective at exploring this optimization
space. The characteristically longer time PS takes to execute is driven by its population moving into the
usable region more quickly and thus each global iteration takes longer. It returns more data, once again
because the swarm converges to the usable region more quickly. The diminishing returns seen in regard to
local iterations and N Returned also shows that the global method brings its population further clumped into
the feasible region within the usable region effectively. PS works off of a velocity update function16 which
can be strongly affected by large differences in magnitude in a particle’s current position fitness value and
the global best. In the unusable and usable infeasible regions p2 can range from 1012 to 1 and so particles
close to the feasible region exercise a strong pull on those in the unusable region. By comparison, DE simply
chooses the most fit from its population and produces new members via crossing and mutation, resulting in
a slower crawl toward the usable and feasible regions. Because PS gets to the feasible region more quickly it
spends more time resolving feasible minima and therefore has a higher chance of finding the global optimum.
Diminishing returns in N Results and Payload Delivered were found in local iterations past ten, however
improvement is found beyond ten global iterations and so our recommendation is to use PS at ten local
iterations and as high of global iterations as time allows.

A question we intend to follow up on is the effect of computational resources on the time required for
the methods. For UR it is expected that increased resources would bring the Time Required metric to a
spread defined by the average time POST requires for iterating on usable runs. This would likely manifest
as a reduction of the intercept in the UR trials Total Time model to one more consistent with the spread
of time required to evaluate a single unusable run as shown in Figure 6 in the previous section. With more
resources the number of runs evaluated by UR could increase as high as time available allows. This would
likely increase the N Returned as the percentage of usable runs would stay constant, however looking across
UR trials and at the gross data returned by all its trials, it is not expected that increased resources would
help UR in the Payload Delivered metric. Individually versus as a group there is not much difference in
Payload Delivered. For PS & DE, Time Required performance would increase up to the point where the
number of threads available was equal to the population size. At this point there would be more threads
than cases to run at a time. Past this point the population size could be increased beyond the minimum
10*number parameters used in this study which would retain the same time required spread but is expected
to improve both the N Returned and Payload Delivered metrics. With all methods it is expected that
decreased resources would cause time required to increase as 1/x, as each individual execution has to wait
in a longer and longer queue.

The goal of this work has been to demonstrate the use of the scaled artificial p2 calculation in conjunction
with global optimization methods applied to the problem of ascent trajectory optimization using the direct
shooting method and local optimizers within POST. Using a global method with the SAP2 calculation is
useful whenever a vehicle under consideration is not familiar, or the analyst is not experienced. By moving
along the curves within the unusable space mapped by SAP2 a global method can suss out whether a vehicle
has a feasible space at all. This kind of analysis could be done with fewer local iterations, greatly reducing
the amount of time required. In this case however the number of global iterations should be increased to
make up for the loss of help from the local optimizers. In this manner verification and validation utilizing
the data returned can be used for debugging a POST input deck when the vehicle design is known to be
feasible or determining whether a conceptual vehicle is able to perform its prescribed mission.

In the end, each of UR and the pair of PS & DE are found to have their place in conceptual design
investigation of Earth-to-orbit trajectory performance. In the case where the vehicles under analysis are
chosen by DOE to take part in a large trade-space study such as the applications in [13,19], then UR is the
way to go. If the vehicles under analysis are to be used in the creation of a surrogate model describing the
entirety of the design space then the off-optimality of any one vehicle reported will be smoothed out by the
end model. This is handy, as the variability in the answer delivered by UR is in general higher than that
of the other global methods at the same number of local iterations. UR works very fast, discards potential
dead ends quickly, provides an answer close to the other methods tested, and is well suited for looking at
multiple vehicles simultaneously. A fair amount of calories are burned in evaluating unusable cases however,
and the UR method is improved significantly by utilizing a priori knowledge of the feasible region. The
reader is referred to [12] for more information on this development. If however the point of analysis is to
provide more detail on a specific vehicle concept, then using an overall global optimization scheme with the
SPA2 calculation is a better bet.
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As the global optimization algorithms progress through their global iterations, each method’s procedure
brings its population further toward and into the usable region. Therefore as iterations proceed the average
length of time for an iteration will increase as more members evaluate usable trajectories. This is the main
mechanism for the high execution times of the global methods. Due to the global methods’ behavior of
iteratively increasing their populations’ usable pass rates they also tend to return a lot more information.
These points returned are not in general allowed enough local iterations to resolve a minima but do return
data from within the feasible space. Instead of returning a single data point, the global methods allow the
automated return of a myriad of data within the feasible region of a vehicle’s response space, returning
a distribution describing the potential performance of the vehicle. With this distribution in hand, the
conceptual designer can now describe both optimal and off-optimal performance. The distribution of data
which comes back from across the feasible space of the analyzed vehicle is then not simply a collection of
local optima as is the case of UR, but also the in-between points which can represent the limitations of
non-idealized control systems, manufacturing inefficiencies, off-spec engine components, and other concerns
which only come to light later in the design cycle. By having this additional data there is higher confidence
in the distribution fit via tighter bounds on mean, standard deviation, and all model fit parameters. This can
be seen comparing the distributions in Figures 10 and 11 below. The amount of data returned by PS brings
the confidence intervals on the Johnson Sl model fit parameters much tighter and from visual inspection
does seem to model the data far more closely.

Figure 10: Johnson Sl fit to Particle Swarm trial with 5 Global, 10 local iterations

Figure 11: Johnson Sl fit to Uniform Random trial with 15 local iterations

Keen-eyed readers may spy an issue with the above distribution fits. As mentioned earlier in this document
the authors have empirically noted the presence of multiple disjoint feasible regions within the response space
of several vehicles. For this particular vehicle there seem to be three resolved by the trials. We do not present
any method for handling the use of mixture models at this time, but we do hope to address this issue in a
later publication.
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